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Summary
Disease avoidance by the use of healthy seed is a particularly important means of control for many
bacterial and viral diseases.  To monitor the production of disease-free seed, a wide variety of seed test
assays have been developed and some are in routine use. The effectiveness of these assays is often
limited by inappropriately designed testing schemes or incorrect interpretations of the results.  We have
attempted to combine practical considerations and recent mathematical studies to develop a rational
approach to the design and interpretation of seed tests for bacterial diseases. The approach could equally
apply to fungal or viral diseases in situations where it is necessary to detect low levels of seed infection.
The merits of different test strategies are discussed in relation to tolerance levels and the establishment
of confidence intervals, and in the context of routine commercial testing and epidemiological studies.

Introduction
Many important plant diseases are seed-borne.  With the increased movement of seed around the
world and the removal of trade barriers the need for accurate and reliable test methods has
increased.  This is particularly so when the pathogens involved are quarantine organisms.
Bacterial and viral diseases present particular problems, as severe epidemics can result from
relatively low numbers of infected seeds and, apart from the use of resistant varieties, there may
be little prospect of control in the field.  It is therefore essential that such diseases are controlled
by a clean seed policy.

Numerous seed test assays have been developed for bacterial diseases. However, confusion
frequently arises in the interpretation of such assays, especially in the case of negative results or
when multiple samples of the same seed-lot are examined.  Moreover, results are generally
presented without any measure of precision.

This paper seeks to combine practical considerations and recent mathematical studies to
develop a rational approach to the design and interpretation of seed tests for bacterial diseases
both for routine testing of commercial seed and as a research tool in the study of disease
epidemiology. The approach could equally apply to fungal or viral diseases in situations where it
is necessary to detect low levels of seed infection.

There have been several previous papers on the design of seed health assays (Geng et al.,
1983; Russell, 1988; Marrou & Messiaen, 1967), but they have tended to concentrate on one
type of assay design or one disease.

Test Methods
Methods for detecting seed-borne bacterial pathogens generally have a number of common
features.  Following sampling and, if appropriate, division into sub-samples, there is usually an
extraction step, during which the pathogen is released from the seed into a liquid medium.  The
presence of the pathogen in the extract is then determined by immunological or molecular
techniques or by the more traditional method of plating the extract onto selective or semi-
selective agar media to produce bacterial colonies for further confirmatory identification.  The
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precise methods will vary between laboratories, and for different pathogens and seed types, and
will be subject to different levels of sensitivity and detection thresholds.

Aims of the Assay
In designing a seed test, it is vital that the aims of the assay are clearly defined.  Assays are of
two basic types (qualitative and quantitative) which may be further sub-divided according to
their purpose:
     a) routine qualitative assays for quarantine purposes with a "zero tolerance";
     b) routine qualitative assays for quality control with a pre-defined tolerance level;
     c) routine assays for quality control where some quantitative estimate of the infection level

is required (to make management decisions, risk assessments, etc.);
     d) assays for research purposes, where precise estimates of infection levels are required.
The designs of assays for these different purposes are treated separately in the following
sections.

Qualitative
The most important factor in the design of routine assays is the tolerance level, the maximum
number of infected seeds which can be tolerated in a seedlot.  There is no such thing as zero
tolerance and it is impossible to certify that a seed lot has a zero level of disease.  Unfortunately,
tolerance levels have been determined for very few diseases, and it is often the case that
tolerance levels arbitrarily arise as a consequence of the assay design.  Setting of tolerance levels
requires data on transmission rates, epidemiology and the relationship between disease levels
and economic yield loss.

Seed tests for pathogens are usually expensive as they require a considerable amount of time,
effort and materials to process each individual sample or sub-sample.  Thus, an important
feature of routine assays is that the number of samples to be tested needs to minimised. The
design of the assay should be simple and interpretation should be straightforward.  No assay is
completely reliable and may give rise to two types of errors: either a seed lot with an infection
level below the tolerance level is rejected (false positive) or a seedlot with an infection level
greater than the tolerance level is accepted (false negative).  The probabilities of these
occurrences, usually given the symbols α and ß respectively, need to be considered in designing
an assay.  As will become apparent, it is also important to know the reliability with which a
single infected seed can be detected in a sample of a given size or conversely the maximum
sample size in which a single infected seed can be detected.  There are also practical limits on
the maximum sample size which can be processed in an assay.

The main differences between routine assays for quarantine purposes and quality control with
a single pre-defined tolerance level will be the acceptability of false positive and negative results
and the tolerance levels themselves.

Quantitative
The design requirements of quantitative assays differ from those above in that an attempt is
being made to estimate the true level of infection in a seed lot.  There may be no pre-defined
tolerance level and the acceptability of false positives and negatives is no longer relevant.  It is,
however, important that there is some estimate of the accuracy and precision of the final
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estimates obtained.  There must still be some consideration of the reliability with which a single
infected seed can be detected in a sample.

In routine testing the number of samples to be processed is still a consideration, but this may
be less important for research purposes.  Here, the time required for the final result may not be
so critical and it may be feasible to do the assay in several stages over a period of several days or
weeks.

Statistical Principles of Analysis
The theoretical basis for the analysis of seed test data is based on the key assumption that the
seeds which are tested are a random sample from the seed lot.  Each seed should be able to be
classified as either healthy or infected and each seed (regardless of health status) should have an
equal chance of being present in a sample.  In practice, the mixing and sampling of seed lots to
satisfy these assumptions can be problematical, but for the purposes of this paper it will be
assumed to be adequate.

 The probability, pc of a least one infected seed being contained in a sample of size n from a
seed lot containing a proportion of infected seeds θ is given by the binomial probability:

This model assumes that sampling is done with replacement, i.e. after the sample has been
analysed it is replaced in the bulk.  In practice this is not the case, but if the sample size is small
in relation to the total size of the lot, it can be used as an approximation.  This model is used for
limiting dilution assays (Taswell, 1981), where the aim is to estimate the proportion of
individuals in a population with some characteristic.

The Poisson probability model:

is used for serial dilution assays (Cochran, 1950) where the aim is to estimate the density of
organisms in a liquid, where λ is the density and v is the volume sampled and is often known as
the most probable number (MPN) method.  This Poisson model has been used for seed health
assays (Geng et al. 1983) but is not the same as the binomial model (eq.1).  They can be made
equivalent if we take n = v and e =  -1 -�

� .  It follows, therefore, that ) -(1- = �� ln  and when θ
is small (< 10%) ) -(1- �ln  is approximately equal to θ.  Thus, the Poisson model is a valid
approximation to the Binomial model when θ is small.

The apparent simplicity of the underlying principles and assumptions is misleading and the
design of assays depends critically on their application as described hereafter.

Case 1: detection always possible, quarantine or quality control - pre-defined tolerance level
If it is always possible to detect an infected seed in a sample of a certain size, then the
probability of a positive result, p+, for a seed test on a sample will be the same as the probability
of an infected seed being present in the sample, i.e. p+ = pc.   It is therefore a simple matter to
rearrange equation (1):

) -(1 -1 = p n
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c
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to determine the size of sample which it is necessary to test in order to satisfy a set probability,
p+ (= pc in this case), of a positive result at a specified tolerance level � nt .  This probability is 1-
β, where β is the probability of a false negative.  Having determined this sample size we can
then plot the probability of a positive result (calculated using eq. 1) for other levels of infection
(θ) (Fig. 1). It is clear from Fig.1 that there is a considerable probability of rejecting seedlots
with an infection level below the tolerance level.  These are considered to be false positives and
it is not until the infection level is around one tenth of the tolerance level that the probability of a
false positive, α, is less than 0.25.

In the quarantine situation this does not present a problem as it is much more important to
ensure that seedlots with an infection level above the threshold are rejected than it is to be
concerned about the possibility of rejecting acceptable seedlots, i.e. α is no longer relevant.  In
practice this means that there is a reasonable margin of safety built into the testing programme.

In routine quality control, the problem is different, as it becomes more important not to reject
acceptable seedlots.  There is no way of reducing this margin for error as long as only one
sample is tested.  Therefore the benefits in terms of costs and simplicity of only testing a single
sample must be balanced against the probability, α, of rejecting too many acceptable seed lots.
Alternatively a lower probability, 1-β, for detecting the tolerance level could be accepted,
reducing the number of seeds tested and shifting the line in Fig.1 to the right.

Case 2: Probability of detection <1
The previous case is based on the assumption that a single infected seed in the sample can

always be detected.  When this is not the case, the probability of obtaining a positive result (p+)
is multiplied by a factor ps, the probability of detecting an infected seed in the sample, i.e  p+ =
ps.pc  (Geng et al. 1983).

This problem can be dealt with simply by determining the maximum sample size in which an
infected seed is almost certain to be detected and dividing the same number of seeds as
determined above (Eq.3) into sub-samples of this size.  A negative result from all such sub-
samples is equivalent to obtaining a negative result for the original sample size. Thus, the
criterion for rejecting a seedlot is: to reject it if one or more sub-samples gives a positive result.
The probabilities of false positives, α, and false negatives, ß, are then precisely the same as if the
sub-samples had been tested as one combined sample as in Case 1.

Alternatively, if the probability of detecting an infected seed, ps, is known, it is possible to
calculate the number of samples, k, of size n, which need to be tested to meet pre-defined
tolerance levels using the following formula:

However, it must be borne in mind (when the criterion for rejecting a seedlot is set as at least
one sub-sample giving a positive result) that as the number of samples increases, the probability,
α, of rejecting a seedlot with an infection level below the tolerance level increases  (Table 2).
When multiple samples are tested, it may be more appropriate to set the rejection/acceptance
criterion to be something other than the rule of at least one positive sub-sample to reject a
seedlot e.g. at least one negative sub-sample.

Another solution, especially if the probability of detecting an infected seed, ps, is relatively
close to one, would be to accept a lower probability for 1-ß, the probability of rejecting a seed
lot with a non-tolerable level of infection.
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Case 3: Quantitative estimation of the proportion of infected seeds
The simplest way of estimating the true proportion of infected seeds in a lot is to test each seed
in a sample individually.  The more seeds examined the more accurate the estimate becomes.
When the proportion of infected seeds is small, however, this requires a very large number of
individual seeds to be examined and becomes impractical.  The solution is to test several
samples of seeds and to estimate the proportion of infected seeds by the maximum likelihood
method.  The design problem is to determine the number and size of samples.  The more
samples tested, the more precise the estimate of infection  (Table 3).  Thus, the gain in precision
must be balanced against the effort required to do the additional tests.

Determining the optimum sample size is more difficult.  Little information is gained from an
assay if either all the samples are positive or all are negative; an estimate of the infection level
can only be made if some samples are positive and some are negative.  It can be shown that most
information is obtained from such an assay when the expected mean number of infected seeds
per sample is between 1 and 2.  Clearly the optimum sample size depends on the proportion of
infected seeds, which is unknown.  Therefore in order to set the sample size to be used, some a
priori estimate of the infection level must be made.  Although there may be little prior
knowledge of infection levels, it may be possible to circumvent the problem by defining a range
of interest.

There are two main strategies for dealing with this problem:
(a) test a number of samples of different sizes on one occasion (single stage design);
(b) perform a preliminary ranging test or tests prior to the main test (sequential or multi-

stage design).
The choice of approach will depend on the aims of the assay, the precision required and the

amount of prior knowledge.  Thus, where the time taken for the final result is a major factor, as
in routine tests on commercial seed, (a) may be the only option, but in research, where time may
not be such an important factor, (b) may give the most efficient use of resources.

The problem of assay design in general terms has been considered by several workers (e.g.
Finney, 1978; Strijbosch et al., 1987) and more  recently in the specific case of seed testing by
Ridout (1993b).

Single stage design.  Examples of optimum batch sizes, in the simplest but artificial case,
where the infection level is known are given in Table 4 (from Ridout, 1993b).  Generally the
number of individual samples to be tested will be set in advance based on cost and the number
of samples which can be reasonably be handled in the laboratory.  The general conclusions are
that when the range of the prior estimate is narrow, the samples should all be of the same size,
but as the range of the prior estimate becomes wider then the samples should be of an increasing
number of different sizes, but with some repetitions.  For examples, see Table 5 (from Ridout
1993b).

Sequential design.  As the optimum sample size can only be determined when the infection
level is known in advance, it follows that if some preliminary or ranging tests can be done in
advance then the final sample size to be used can be targeted more efficiently.  The design
problem is then to choose the size and number of samples to be used in the ranging tests.
Intuitively, as the precision of the estimate increases with the number of samples tested, it would
seem that if the total number of tests is constrained, most samples should be tested when most is
known about the sample, i.e. if the test is done in two stages, more samples should tested at stage
2 than at stage 1.
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Ridout (1993b) considered this problem with the constraints that a maximum of twelve
samples should be tested in three stages and concluded that 1, 3 and 8 samples should be tested
at stages 1, 2 and 3 respectively.  Using this design and a prior range of the infection level
between 0.1 and 25% the initial sample size was determined to be 26 seeds with subsequent
sample sizes depending on the outcome of the tests at the previous stage (Table 6).  The
efficiency of this three stage approach was 70% compared to an efficiency of 40% for the
optimal single stage design.

Interpretation.  Previous formulae have presented the probability of a result occurring, given
that we know the true infection level θ.  The interpretation of the results is based on the reverse
of this, i.e. what is the infection level, �̂ , which is most likely to have given the result obtained.
Most simply this can be understood by examination of Table 7.  Reading across the table gives
the probability of a result occurring given certain infection level, θ; reading down the table gives
the likelihood of the infection level being �̂  given a certain result. Unlike probabilities which
must sum to one, the absolute likelihood values have no intrinsic meaning and it is only their
relative values which are important.  It is therefore conventional to express them as ratios of the
maximum value which can be obtained.  Thus, we would divide the entries in Table 7 by the
maximum of the appropriate column.

When tests have been done on a group of samples of the same size, and with ps=1, the most
likely proportion of infected seeds can be determined using the following formula:

where �̂  is the infection level, n is the number of seeds in a sample and r/k is the proportion of
positive results, r=number positive, k=number of samples.  Effectively, the proportion of
positive results, r/k, in this formula provides an estimate of the probability of a positive result,
p+.

When samples of several different sizes have been tested, although the same principle is
involved, there is unfortunately no explicit formula as in equation 5.  It is, of course, possible to
obtain separate estimates for each sample size; however, a linear relationship between pi, the
probability of a positive result for the ith sample, and �  can be obtained by rearrangement of
equation (1):

which provides a basis for producing a combined estimate from all the data on a computer as in
the procedure 'DILUTION' (Ridout & Welham, 1991) in the Genstat V procedure library.
Equation 6 was presented graphically in a nomogram by Taylor and Phelps (1984) and Taylor et
al. (1993).  Traditionally, because of the computational requirements, estimates were presented
in the form of 'MPN' tables as provided by Taylor and Phelps (1984) and Taylor et al. (1993).
These are limited, however, because they only apply to defined testing schemes.

Confidence Limits.  Calculation of confidence intervals for estimates has been the subject of
some debate.  Taylor (1970) considered that the 95% confidence intervals provided in MPN
tables by Swaroop (1951) were unnecessarily wide and proposed the use of 80% limits
calculated to Swaroop's tables.  Taylor & Phelps (1984), in their tables, presented their estimates
with "2 unit support limits"  (Edwards, 1972), now generally known as likelihood ratio (LR)
confidence intervals.  Likelihood ratios follow an asymptotic � 2  distribution (Cox & Snell,

e -1 = n

)
k
r -(1ln
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1989) from which it follows that a likelihood ratio of 6.82 ( 0.05 =  ,e 2

2
1,

�

�
�

7) is equivalent to a
95% confidence interval.  In a  theoretical investigation of the properties of confidence intervals
estimated by different methods, Ridout (1993a) justified the use of confidence intervals based on
the likelihood ratio for this problem.  He noted that when all samples are either positive or
negative only lower and upper limits, respectively, can be estimated and emphasised the
importance of goodness-of-fit tests, as confidence intervals can become misleadingly small
when the combination of results is improbable (i.e. the data has a poor fit to the model).  The
nomogram of Taylor & Phelps (1993) provides a visual measure of goodness-of-fit, but does not
provide any confidence intervals.  Unlikely combinations of results are often (but not always)
omitted from MPN tables.   The Genstat procedure 'DILUTION' (Ridout & Welham, 1991)
provides both confidence intervals and a measure of goodness-of-fit.

Conclusions
It is apparent from the principles presented above that in designing any seed health assay, the
aims of the assay should be clearly defined and that tolerance levels and what constitutes an
acceptable confidence interval should be set in advance.  Tolerance levels should be based on
sound epidemiological data, and may vary depending on the aim of the assay.

The labour and cost requirements need to be carefully balanced in relation to the required
standards of precision and reliability.  For example, in one currently used scheme for soya bean
bacterial blight testing, five samples of 1000 seeds are tested and seedlots are rejected only if all
samples are positive.  This implies a tolerance level of 0.44% for a probability level of 95%, the
same tolerance level could be achieved by testing a single sample of 700 seeds and rejecting the
seedlot if it is positive.  This approach would increase the probability of rejecting acceptable
seedlots compared to testing multiple samples, but presumably reduces the work (and cost)
involved five-fold.

The sensitivity of the test method in terms of the probability of detecting a single infected
seed in a sample of a certain size is of prime importance in determining whether more than one
sample is needed, and it is vital that this is investigated when developing any test system.
Clearly there is a need to define what is meant by an infected seed, in practice this could be
defined as a seed carrying greater than a certain number of pathogen propagules.  This, however,
implies that there is some inoculum threshold below which disease will not occur and ignores
the one-hit principle of infection which probably applies to most diseases (Roberts, 1985). It
follows from the one-hit principle that a seed carrying a low number of disease propagules may
have a very low probability of giving rise to disease, but this probability is not zero.  Again this
emphasises the need for a thorough understanding of the aetiology and epidemiology of the
disease, particularly the relationship between inoculum, disease (transmission), and detection
thresholds.

Throughout this paper, it has been assumed that the seeds tested are a random sample from
the seedlot and that the sampling protocols are adequate to ensure this.  These assumptions are
of prime importance and it is unlikely that any assay can compensate for poor or biased
sampling of the seed bulk.
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Computer Programs
A 'stand alone' computer program to estimate the proportion of infected seeds from the results of
an assay, together with confidence intervals and a goodness-of-fit test, will soon be available
from the authors.
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Table 1.  Samples sizes, n, for probability of 0.95 or
0.99 of a positive test result for an infection level, θ.

θ n (β�0.05) n (β�0.01)

0.01% 29960 46050

0.02% 14980 23020

0.05% 5990 9210

0.1% 2990 4600

0.2% 1500 2300

0.5% 600 920

1% 300 460

20% 150 230

50% 4 10

Table 2.  Some examples of the number of samples, k, required for a probability of 0.95
of detection of an infection level θnt=0.1%, given a test sensitivity of ps and a sample

size of n, and probability of accepting a seed lot, 1-α, with a tolerable infection level of
θt=0.05%

ps n Rounded k
(1-ß=0.95, θnt=0.1%)

1-α
(θt=0.05%)

1 3000 1 0.22

1 1000 3 0.22

0.8 3000 2 0.08

0.96 1000 3 0.24

1 30 100 0.22

1 100 30 0.22

0.87 200 17 0.23

0.65 500 10 0.19
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Table 3. Effect of number of samples, k, on 95% confidence limits for a sample size,
n, of 1000 seeds.

Number of
samples, k

Number
positive, r

Estimated infection
level,  (%)

95 % confidence limits

lower upper

3 2 0.11 0.02 0.38

6 4 0.11 0.03 0.27

12 8 0.11 0.05 0.21

24 16 0.11 0.06 0.18

48 32 0.11 0.07 0.16

Table 4.  Optimum sample size, n, for determining infection
level, θ.

θ n

0.001 1593

0.005 318

0.01 159

0.05 31

0.10 15

0.25 6

Table 5.  Sample sizes for optimal single stage seed testing
design for different prior ranges and testing six samples (from

Ridout, 1993b).

Prior range Sample sizes

0.4-6.7% 64,64,64,64,64,64

0.1-25% 16,16,16,89,303,303

0.006%-99% 1,1,14,102,755,5202
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Table 6.  Sample sizes for optimal three stage seed testing design for a prior range of
infection levels from 0.1 to 25% and testing a total of twelve samples on three occasions

(from Ridout, 1993b).

Stage 1 Stage 2 Stage 3

Size Outcome Size Outcome Size

26 0/1 240
0/3 902

1/3 639

2/3 335

3/3 65

1/1 13
0/3 95

1/3 35

2/3 16

3/3 9

Table 7.  Probabilities of obtaining r positive samples out of 5 tested for a sample
size, n, of 1 and an infection level of θ

θ Number of positive samples, r, out of 5 tested

0 1 2 3 4 5

5% 0.77 0.20 0.02 0.00 0.00 0.00

10% 0.59 0.33 0.07 0.01 0.00 0.00

20% 0.33 0.41 0.20 0.05 0.01 0.00

30% 0.17 0.36 0.31 0.13 0.03 0.00

40% 0.08 0.26 0.35 0.23 0.08 0.01

50% 0.03 0.16 0.31 0.31 0.16 0.03

60% 0.01 0.08 0.23 0.35 0.26 0.08

70% 0.00 0.03 0.13 0.31 0.36 0.17

80% 0.00 0.01 0.05 0.20 0.41 0.33

90% 0.00 0.00 0.01 0.07 0.33 0.59

95% 0.00 0.00 0.00 0.02 0.20 0.77
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Figure 1.  Probability, pc of at least one infected seed being
contained in a sample of 3,000 seeds for different infection
levels, θ, calculated using the formula: ) -(1 -1 = p n
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